Support Vector Machines with a Reject Option

نویسندگان

  • Yves Grandvalet
  • Alain Rakotomamonjy
  • Joseph Keshet
  • Stéphane Canu
چکیده

We consider the problem of binary classification where the classifier may abstain instead of classifying each observation. The Bayes decision rule for this setup, known as Chow’s rule, is defined by two thresholds on posterior probabilities. From simple desiderata, namely the consistency and the sparsity of the classifier, we derive the double hinge loss function that focuses on estimating conditional probabilities only in the vicinity of the threshold points of the optimal decision rule. We show that, for suitable kernel machines, our approach is universally consistent. We cast the problem of minimizing the double hinge loss as a quadratic program akin to the standard SVM optimization problem and propose an active set method to solve it efficiently. We finally provide preliminary experimental results illustrating the interest of our constructive approach to devising loss functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Data Replication Method for the Classification with Reject Option

Classification is one of the most important tasks of machine learning. Although the most well studied model is the two-class problem, in many scenarios there is the opportunity to label critical items for manual revision, instead of trying to automatically classify every item. In this paper we adapt a paradigm initially proposed for the classification of ordinal data to address the classificati...

متن کامل

Support Vector Machines with Embedded Reject Option

In this paper, the problem of implementing the reject option in support vector machines (SVMs) is addressed. We started by observing that methods proposed so far simply apply a reject threshold to the outputs of a trained SVM. We then showed that, under the framework of the structural risk minimisation principle, the rejection region must be determined during the training phase of a classifier....

متن کامل

Support vector machines with a reject option

This paper studies 1 regularization with high-dimensional features for support vector machines with a builtin reject option (meaning that the decision of classifying an observation can be withheld at a cost lower than that of misclassification). The procedure can be conveniently implemented as a linear program and computed using standard software. We prove that the minimizer of the penalized po...

متن کامل

Classification with Reject Option Using the Self-Organizing Map

Reject option is a technique used to improve classifier’s reliability in decision support systems. It consists on withholding the automatic classification of an item, if the decision is considered not sufficiently reliable. The rejected item is then handled by a different classifier or by a human expert. The vast majority of the works on this issue have been concerned with implementing a reject...

متن کامل

Efficient rejection strategies for prototype-based classification

Due to intuitive training algorithms and model representation, prototypebased models are popular in settings where on-line learning and model interpretability play a major role. In such cases, a crucial property of a classifier is not only which class to predict, but also if a reliable decision is possible in the first place, or whether it is better to reject a decision. While strong theoretica...

متن کامل

Reject Option Paradigm for the Reduction of Support Vectors

In this paper we introduce a new conceptualization for the reduction of the number of support vectors (SVs) for an efficient design of support vector machines. The techniques here presented provide a good balance between SVs reduction and generalization capability. Our proposal explores concepts from classification with reject option. These methods output a third class (the rejected instances) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008